QACE: Asking Questions to Evaluate an Image Caption

Hwanhee Lee¹, Thomas Scialom^{2,3}, Seunghyun Yoon⁴, Franck Dernoncourt⁴, Kyomin Jung¹

¹Seoul National University, Seoul, Korea
 ²Sorbonne Université, Paris, France
 ³reciTAL, Paris, France
 ⁴Adobe Research, San Jose, CA, USA

Image Caption Evaluation

Reference: a passenger train pulled up to a covered platform with people standing on the platform.

Caption1: a blue subway train pulls into the subway station.

Caption2: a <u>red</u> train pulls into the platform.

 N-gram similarity metrics often fails to capture the semantic erros in the generated captions and require multiple references.

Overall Flow of QACE

- 1 Extract possible answer spans (noun phrases) in a candidate caption.
- 2 Generate answer-aware questions using answer spans and a candidate caption.
- (3) Generate answers using "candidate caption" and given context "image" (VQA), "reference" (Textual QA).
- 4 QACE-Img: Compare the answers between an "image" and a "candidate caption".
 - QACE-Ref: Compare the answers between a "reference caption" and a "candidate caption".

For comparing answers, we use *F1*, *BERTScore*, and *answerability*.

Abstractive VQA Model: Visual-T5

pole ou grass person	bus ck wheel			
What type of bus is driving down a street? 				
Textual Embedding	Visual Embedding			
Encoder-Decoder				
•				
red double decker b	ous			

- Standard VQA models are framed as a classification among only a few thousand categories, and their usage is limited to comparing very few pre-defined answers.
- We propose an abstractive VQA system Visual-T5 as a new module for QACE-Img that can generate freeform abstractive answers given a textual question and an image.
- We conduct a human evaluation of Visual-T5 and show an accuracy of 69%.

Experimental Results

	Ref?	Pascal50s	Composite	Flickr8k
BLEU-4	1	65.2	45.7	28.6
ROUGE-L	1	67.7	47.7	30.0
METEOR	1	80.5	46.6	40.3
CIDEr	1	77.8	47.4	41.9
SPICE	1	76.1	48.6	45.7
BERTScore	1	72.0	45.6	30.5
QACE-Ref (ours)	1	75.1	49.3	40.5
F1	1	57.5	55.1	9.2
BERTScore	1	76.4	46.0	30.9
Answerability	1	71.6	47.3	39.0
-Perplexity	×	46.8	1.7*	10.1
VIFIDEL	×	69.0	13.1	33.6
QACE-Img (ours)	×	70.0	19.1	29.1
F1	×	62.0	12.5	27.3
BERTScore	×	65.9	12.8	27.1
Answerability	×	74.5	15.7	27.8

• We compute the correlation with human judgments for various metrics.

• Both QACE-Ref and QACE-Img show comparable or better performance than baseline metrics.

 Averaging the results of three answer similarity functions mostly show the best results.

Example

Candidate: a <u>man^{A1}</u> is standing on a <u>sunny beach^{A2} (Human: 1.0)</u> Reference: a man walks down the beach near the ocean Q1: What is standing on a sunny beach? Q2: What is a man standing on?

Ref	A1:man A2:beach	QAEC _{Ref} : 0.88
Img	A1:man A2:sand	QAEC _{Img} : 0.79

Candidate: a <u>cow^{A1}</u> is standing in a <u>field^{A2}</u> of <u>grass^{A3}</u> (Human: 0.2)
Reference: a dog with a frisbee standing in the grass
Q1: What animal is standing in a field of grass?
Q2: What is a cow standing in?
Q3: What type of field is a cow standing in?

Ref	A1:dog A2:grass A3:grass	QAEC _{Ref} : 0.60
Img	A1:dog A2:unanswerable A3:grassy field	QAEC _{Img} : 0.47

Closing Remarks

 We propose a new captioning metric QACE, which generates questions on the evaluated caption and checks its content by asking the questions on either the reference caption (QACE-Ref) or the source image (QACE-Img).

• We propose *Visual-T5*, an abstractive VQA system that can generate free-from answers as a component of QACE-Img.

• Experimental results show that both QACE-Ref and QACE-Img show comparable or better performance than baseline metrics.

Code: https://github.com/hwanheelee1993/QACE